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Abstract

In many real applications traditional superresolu-
tion methods fail to provide high-resolution images due
to objectionable blur and inaccurate registration of in-
put low-resolution images. In this paper, we present
a method of superresolution and blind deconvolution
of video sequences and address problems of misregis-
tration, local motion and change of illumination. The
method processes the video by applying temporal win-
dows, masking out regions of misregistration, and mini-
mizing a regularized energy function with respect to the
high-resolution frame and blurs, where regularization
is carried out in both the image and blur domains. Ex-
periments on real video sequences illustrate robustness
of the method.

1. Introduction

Imaging devices, such as camcorders or web cam-
eras, have limited achievable resolution due to many
theoretical and practical restrictions. An original scene,
represented by a discrete high resolution (HR) image
denoted as f , warps at a camera lens because of the
scene motion and/or change of the camera position. In
addition, several external effects blur images: atmo-
spheric turbulence, camera defocus, lens abberations,
relative camera-scene motion, etc. Most of these ef-
fects are unpredictable and of transitory behavior, yet
we assume that we can model them by convolution
with an unknown point spread function (PSF) h. Fi-
nally, the camera sensor discretizes the image and pro-
duces digitized noisy image g, which we refer to as
a low-resolution (LR) image, since the spatial resolu-
tion is too low to capture all the details of the origi-
nal scene. In video, f changes in time, which implies
that observed LR frames g’s are also time dependent.
We assume that the changes are sufficiently slow with

respect to the frame rate of the video, so that for the
given time j there exists a temporal window Wj =
{j−L/2, . . . , j, . . . , j+L/2} of length (L+1), L > 0,
in which the original high-resolution (HR) frame f j can
be related to the LR frames gi (i ∈ Wj) by the follow-
ing acquisition model in the vector-matrix format

gi = D(θji )H
j
i f
j + nj . (1)

A schematic depiction of the relation is in Fig. 1. The
superscript j indexes HR frames and the subscript i in-
dexes LR frames. The noise vector nj is assumed to
be additive and independent of f j . Matrix D(θji ) de-
notes a decimation operator, which performs warping
(defined by a set of parameters θji ), convolution with a
sensor PSF (assumed to be known), and downsampling.
This way it models the acquisition process of the cam-
era and a geometric transformation between the i-th and
j-th frame. Matrix Hj

i denotes convolution with an un-
known PSF hji .
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Figure 1. Acquisition model.

The above model is the state of the art as it takes all
possible degradations into account and combines two
fundamental problems of image processing: multiframe
blind deconvolution to estimate h and superresolution
(SR) to estimate HR frame f .

Current blind deconvolution techniques [5, 2] re-
quire no or very little prior information about the blurs,
they are sufficiently robust to noise and provide satisfy-
ing results in most real applications. However, they can
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hardly cope with the decimation operator, i.e. change
of resolution, which violates the standard convolution
model. On the contrary, state-of-the-art SR techniques
[1] achieve remarkable results of resolution enhance-
ment in the case of no blur. They accurately estimate
the subpixel shift between images but lack any appara-
tus for calculating the blurs.

Recently in [4], we proposed a unifying method that
simultaneously estimates the blurs and HR image from
multiple LR images. The key idea was to determine
subpixel shifts by calculating the blurs. As the blurs
are estimated in the HR scale, positions of their cen-
troids correspond to sub-pixel shifts. Therefore by esti-
mating blurs we automatically estimate shifts with sub-
pixel accuracy, which is essential for good performance
of SR.

This paper extends our previous work to video and
presents remedies for two common problems in SR
of video: change of illumination and local motion.
Apart from robustness to misalignment, including esti-
mation of blurs in the proposed method cancels effects
of change of illumination. For warping (registration)
of frames, we assume a homography model, which is
mostly sufficient even for scenes with significant varia-
tions in depth, since change of camera position between
neighboring video frames is relatively small. Never-
theless, homography cannot map regions that contain
local motion. Thus discrepancies in preregistered im-
ages give us regions where local motion is highly prob-
able. Masking out such regions in the decimation oper-
ator D and performing simultaneously blind deconvo-
lution and SR, produces naturally looking HR frames.
In regions, which are masked out in every frame, inter-
polation takes place, but in the rest precise SR can be
calculated.

Section 2 outlines an alternating minimization ap-
proach to solve (1) and discusses each step of the pro-
posed algorithm. Experiments on true web-camera
sequences demonstrate performance of the proposed
method in Section 3 and Section 4 concludes the paper.

2. Iterative restoration

In order to find the estimate of the HR video se-
quence {f j}, we adopt an approach of minimizing a
regularized energy function, which makes the method
robust to noise and well posed. The energy function
consists of three terms and takes the form

E(f j ,hj , θj) =
∑
i∈Wj

‖Mj
i (D(θji )H

j
i f
j − gi)‖2+

+ αQ(f j) + βR(hj) , (2)

where hj denotes all blurs {hji} in the temporal window
Wj . Likewise, θj denotes a set of homography param-
eters {θji }, i ∈ Wj . Matrix Mj

i is a diagonal matrix,
which performs masking of regions with local motion.
The first term measures the fidelity to data and emanates
from our acquisition model (1). The remaining two are
regularization terms with weights α and β, which will
be discussed later.

To find a minimizer, we perform alternating mini-
mization of E over f j , hj and θj . The proposed algo-
rithm is outlined below and a more detail discussion of
each step follows.

Algorithm
For each reference time j and associated frame se-

quence given by temporal windowWj

1. Estimate homography {θji } between the reference
frame gj and each gi for i ∈ Wj . Calculate masks
Mj

i and construct decimation operators Dj
i . Ini-

tialize {hji} with delta functions.

2. Find a new estimate of HR image

f j = arg min
f
E(f ,hj , θj) . (3)

3. Find a new estimate of PSFs

hj = arg min
h
E(f j ,h, θj) . (4)

4. Adjust homography parameters

θj = arg min
θ
E(f j ,hj , θ) (5)

and update Dj
i .

5. Repeat steps 2–4 until the image f j meets a con-
vergence criterion.

For superresolution purposes, the homography be-
tween the frames must be estimated with high precision.
In addition, we need a global registration procedure that
local motion does not disrupt. The following combina-
tion of phase correlation, minimization of least squares
error between frames and RANSAC worked well for all
video sequences we tested:

• Estimate shift by phase correlation. The frame be-
ing registered is shifted accordingly.

• If the phase correlation fails (difference after reg-
istration is larger than a threshold), apply one
of standard homography estimation procedures
based on a robust detector of control points and
RANSAC [3].



• Adjust homography matrix by minimizing the
least square error between the reference frame and
the processed frame transformed using bicubic in-
terpolation.

The decimation operator D(θji ) maps pixels of the
estimated HR frame f j to pixels of the observed LR
frame gi. The number of registration parameters θji de-
pends on the type of geometric transform. In our case,
we consider homography, i.e., 8 parameters for each i-
j pair. To better model the acquisition process of the
camera sensor, we include the sensor PSF (intrinsic blur
of the camera) in to the decimation matrix. The sensor
PSF is assumed to be of the Gaussian shape of known
variance. The HR-LR mapping is done by associating
with each row of D(θji ) a discrete sensor PSF, which
is displaced and deformed according to the given ho-
mography. Finally, we mask out erroneous LR pixels
by multiply the decimation operator by a diagonal ma-
trix Mj

i , which has zeros at locations of incorrect pixels
and ones elsewhere. The erroneous pixels are located,
e.g., in regions of local motion, where the global geo-
metric transform does not hold. To determine Mj

i , we
perform the following. We take the difference of regis-
tered LR frames gi and gj and threshold its magnitude.
Values below 10% of the intensity range of LR frames
are considered as correctly registered and correspond-
ing mask pixels are set to one; remaining mask pixels
are zeroed. In order to attenuate the effect of misreg-
istration errors, the morphological operator “closing” is
then applied to the mask. Note that Mj

j will be always
identity and therefore HR pixels of f j in regions of lo-
cal motion will be at least mapped to LR pixels of gj .
Depending on how many LR images map to the HR im-
age, the restoration algorithm performs in each region
tasks from simple interpolation up to well-posed super-
resolution.

For the image regularization terms we use total varia-
tion,Q(f) =

∫
|∇f |. It seems to be a reasonable choice

for common images taken by a standard camera. While
in smooth areas it has the same isotropic behavior as
the Laplacian operator, it also preserves edges in im-
ages. However, it is nonlinear and one must employ lin-
earization techniques, such as half-quadratic algorithm.
For the purpose of our discussion it suffices to state that
after linearization and discretization we arrive at

Q(f j) = f j
T
Lf j , (6)

where L is a symmetric block diagonal matrix con-
structed from values of the gradient of f and it is up-
dated after every iteration of the algorithm.

The PSF regularization term R(hj) is intrinsically
multiframe as it utilizes relations between all the LR

frames {gji } inWj . An exact derivation is given in [4].
Here, we leave the discussion by stating that the regu-
larization term becomes

R(h) = hj
T
Nhj , (7)

where N is a symmetric matrix that depends solely on
{gji }, i ∈ Wj .

Steps 2 and 3 both solve a system of linear equations,
since each term of (2) is quadratic w.r.t. f and h. Step
4 requires numeric approximation of derivatives, but
since hj compensate for misalignment, this step is often
not necessary. Change of illumination results in change
of contrast in frames, i.e., multiplication of image inten-
sity values by a constant. If the estimated PSF energy
(
∑
x h

j
i (x)) differs from 1, convolution with such PSF

automatically adjusts contrast.

3. Experiments

The following two experiments demonstrate the abil-
ity of the proposed method to deal with real video se-
quences including elimination of artifacts in regions of
local motion. We used a standard web camera to cap-
ture short (20s) video sequences with 30 fps and shutter
speed 1/30s. In both cases, we worked with central sec-
tions of the videos of size roughly 100× 100 pixels.

Figure 2. Input video sequence.

Figure 3. PSFs corresponding to the input
video sequence.

Fig. 2 shows the first seven frames of the original
video sequence used for computation of the HR frame
in the first experiment. Note that there is a signifi-
cant translation component between frames. The fourth
frame is used as a reference frame and three preceding
and following frames are independently registered to it
(temporal window of size 7). Then, we reconstruct the
high resolution image as detailed in steps 2–5 of the al-
gorithm. No local motion occurred in the tested video
sequence and therefore masking matrices Mj

i approach
identity. In Fig. 3 we can see the estimated PSFs, which
correspond to LR frames in Fig. 2 and which model ex-
ternal blurring and help to eliminate inaccuracy in sub-



Figure 4. HR image computed by bicu-
bic interpolation (left) and the proposed
method (right).

pixel registration. Fig. 4 demonstrates that the new ap-
proach (right) is clearly superior to simple bicubic in-
terpolation of the original frames (left).

The second experiment illustrates the advantage of
masking if the video sequence contains local motion,
such as a person waving a hand. The temporal window
was set to 10 frames. An example of 5 (1, 3, 5 – refer-
ence, 7, 9) LR frames of one such temporal window is
in Fig. 5 (top). Displacements of the waving hand are
apparent. Registering the frames in the first step of the
algorithm removes homography. The calculated masks
in Fig. 5 (bottom) show that most of the erroneous pix-
els are around the waving hand. Note that during HR re-
construction only the middle frame, which is the refer-
ence one and does not have any mask, provides informa-
tion about the pixels in the region of the waving hand.
Comparison of estimating HR frames with and without
masking is in Fig. 6. Ignoring masks results in heavy
artifacts in the region of local motion. On the contrary,
masking produces smooth results with the masked-out
regions properly interpolated.

Figure 5. Input video sequence with mo-
tion. Examples of 5 frames (top) with re-
gions masked out (bottom).

Figure 6. HR image using a traditional SR
method (left) and our proposed method
with masking (right).

4. Conclusion

The proposed algorithm performs simultaneously
resolution enhancement and deblurring of video se-
quences. Introducing the deconvolution step renders the
method less vulnerable to misregistration and change of
illumination. Special attention is paid to local motion in
video, which can produce heavy artifacts. Using masks
we eliminate such artifacts at a price of performing only
interpolation in the regions of local motion.

In future, we plan to research on predicting the qual-
ity of reconstructed HR frames based on the shape of
PSF estimates, speeding up calculation by utilizing pre-
vious HR frames, and incorporating motion fields to
segment the scene and perform segment-wise recon-
struction.
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